PREPARATION AND PROPERTIES OF 2-(DIALKYLAMINOMETHYL)CYCLOHEXYL AND 2-(DIALKYLAMINOMETHYL)PHENYL CARBANILATES

Alena Brádlerovía ${ }^{a}$, Naděžda Prónayoví ${ }^{b}$, Eva Mıšíkovía and Ján Ďurinda ${ }^{a}$
${ }^{a}$ Department of Inorganic and Organic Chemistry,
Faculty of Pharmacy, Comenius University, 83232 Bratislava and
${ }^{\text {b }}$ Central Laboratory of Chemical Technique,
Faculty of Chemical Technology, Slovak Technical University, 81237 Bratislava

Received August 30, 1989
Accepted December 15, 1989

Abstract

A series of 2-(dialkylaminomethyl)cyclohexyl and 2-(dialkylaminomethyl)phenyl esters of substituted carbanilic acid have been prepared and their identity verified by elenental analysis and evaluation of IR and ${ }^{13} \mathrm{C}$ NMR spectra. The spectral results have been used also for determination of isomerism of the starting 2 -dialkylaminomethylcyclohexanols and final carbanilates. Local anaesthetic activity and acute toxicity have been tested with some of the substances.

In the context of studies of relations between structure and biological activity we synthetized, in the past few years, esters of carbanilic acid substituted with a basic group as compounds with high local anaesthetic activity ${ }^{1}$. It has been known for quite a long time that the local anaesthetic effect is accompanied very often by antiarrhythmic activity ${ }^{2-\vartheta}$. In order to extend our knowledge in this area, we focused our attention to preparation of structural analogues of trapencain (2-(1-pyrrolidinyl)cyclohexyl 3-pentyloxycarbanilate) which is being introduced into practice as a cytoprotective agent and local anaesthetic.

The starting 2-(dialkylaminomethyl)cyclohexanols were prepared by the Mannich reaction and subsequent reduction. Beside the usual complex hydrides, synhydride was also successfully used for the reduction. The 2-(dialkylaminomethyl)cyclohexanols obtained represent isomeric mixtures, which was proved by TLC using the cis and trans isomers of 2-(dimethylaminomethyl)cyclohexanol ${ }^{7}$ as standard substances (Table VII). From the magnitude of spots it could be seen that the cis isomer was present in small amount in some cases (below 10%). The 2-(dialkylaminomethyl)cyclohexanols were separated on the preparative scale in the form of the corresponding 4-nitrobenzoates. In most cases it was possible to isolate the pure trans isomer, whereas a small amount of cis isomer was obtained in the case of 2--(morpholinomethyl)cyclohexanol.

According to refs ${ }^{7-10}$ IR and ${ }^{1} \mathrm{H}$ NMR spectra are used for estimation of stereo-
chemistry of 2-(dialkylaminomethyl)cyclohexanols. However, in the case of our compounds these spectra gave no unambiguous results. Evaluation of the ${ }^{13} \mathrm{C}$ NMR spectra has turned out to be the most suitable method for estimation of configuration of the isomers, the signals of the cyclohexane ring carbon atom carrying oxygen atom in the axial and in equatorial positions being sufficiently different in both the starting cyclohexanols (Table I) and their 4-nitrobenzoates.

The final carbanilates were prepared by the well-tried method ${ }^{1}$ from the respective aryl isocyanate and 2-(dialkylaminomethyl)cyclohexanol. Either the pure isomers or their unseparated mixtures were used for the syntheses. The carbanilates were isolated either as solid bases or as salts with hydrochloric acid (Table II).

Compound	R^{1}	R ${ }^{2}$	R^{3}	x
$1 \times$	${ }^{7} \mathrm{CH}_{3}$	${ }^{7} \mathrm{CH}_{3}$	H	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}$
x	${ }^{\prime} \mathrm{CH}_{3}$	${ }^{\prime} \mathrm{CH}_{3}$	${ }^{8} \mathrm{CH}_{3}$	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}$
XI	${ }^{\circ} \mathrm{CH}$	${ }^{\prime} \mathrm{CH}_{3}$	H	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}$
XII	${ }^{\circ} \mathrm{CH}$	${ }^{\prime} \mathrm{CH}_{3}$	CH_{3}	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}$
XIII	${ }^{\mathrm{CH}}$	${ }^{\prime} \mathrm{CH}_{3}$	H	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}$
XIV	${ }^{\circ} \mathrm{CH} \mathrm{H}_{3}$	${ }^{\prime} \mathrm{CH}_{3}$	${ }^{8} \mathrm{CH}_{3}$	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}$
$x V$	$\mathrm{OC}_{6} \mathrm{H}_{13}$	H	H	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}$
XVI	$\mathrm{OC}_{7} \mathrm{H}_{15}$	H	H	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}$
$x \vee 11$	${ }^{\prime} \mathrm{CH}_{3}$	${ }^{\text {' }} \mathrm{CH} \mathrm{H}_{3}$	H	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{2}$
XVIII	${ }^{7} \mathrm{CH}_{3}$	${ }^{\prime} \mathrm{CH}_{3}$	${ }^{8} \mathrm{CH}_{3}$	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{2}$
XIX	$\mathrm{OC}_{4} \mathrm{H}_{9}$	H	H	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{2}$
$x x$	$\mathrm{OC}_{6} \mathrm{H}_{13}$	H	H	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{2}$

Table I

Compound	Isomer	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10
$I^{\text {b }}$	cis	$70 \cdot 70$	36.40	29.40	$24 \cdot 70$	21.50	$32 \cdot 60$	$16 \cdot 80$	-	-	-
II	cis	71.78	$36 \cdot 15$	27.90	23.40	$22 \cdot 41$	31.77	$61 \cdot 36$	45.98	-	-
V	cis	69.52	35.08	26.38	22.22	21.70	31.32	$60 \cdot 31$	53.81	$66 \cdot 02$	-
$V I$	cis	71.47	36.13	$27 \cdot 50$	$22 \cdot 87$	$22 \cdot 87$	32.03	$60 \cdot 30$	$55 \cdot 16$	53.73	45.94
I^{c}	trans	76.40	$40 \cdot 30$	33.70	25.70	25.20	35.50	$18 \cdot 60$	-	-	-
II	trans	$77 \cdot 58$	$40 \cdot 74$	28.78	25.53	$24 \cdot 10$	$34 \cdot 37$	67.18	$45 \cdot 67$	-	-
V	trans	$77 \cdot 32$	39.50	28.72	25.47	24.04	$34 \cdot 24$	$66 \cdot 14$	54.06	$66 \cdot 73$	-
$V I$	trans	$77 \cdot 58$	$40 \cdot 02$	28.91	25.60	$24 \cdot 17$	$34 \cdot 44$	65.88	$55 \cdot 16$	53.73	$45 \cdot 94$

Table II
Characterization of carbanilates $I X-X X V$

Compound	$\begin{aligned} & \text { Isomer }^{a} \\ & \text { (Yield, \%) } \end{aligned}$	$\begin{aligned} & \text { M.p., }{ }^{\circ} \mathbf{C} \\ & \text { (solvent }{ }^{\text {a }} \end{aligned}$	Formula (M.w.)	Calculated/Found		
				\% C	\% H	\% N
$1 X^{\text {b }}$	(63)	$170-173$ (A)	$\underset{(369 \cdot 0)}{\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{2}}$	$\begin{aligned} & 65 \cdot 11 \\ & 64 \cdot 75 \end{aligned}$	$\begin{aligned} & 9.01 \\ & 9.09 \end{aligned}$	$\begin{aligned} & 7 \cdot 59 \\ & 7 \cdot 40 \end{aligned}$
$X^{\text {b }}$	trans (62)	$183-186$ (A)	$\underset{(383 \cdot 0)}{\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{ClN}_{2} \mathrm{O}_{2}}$	$\begin{aligned} & 65 \cdot 86 \\ & 66 \cdot 01 \end{aligned}$	$\begin{aligned} & 9 \cdot 21 \\ & 9 \cdot 30 \end{aligned}$	$\begin{aligned} & 7 \cdot 31 \\ & 6.99 \end{aligned}$
XI	trans (89)	95-96 (B)	$\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (344 \cdot 5) \end{gathered}$	$\begin{aligned} & 73 \cdot 22 \\ & 73 \cdot 36 \end{aligned}$	$\begin{aligned} & 9 \cdot 36 \\ & 9 \cdot 39 \end{aligned}$	$\begin{aligned} & 8 \cdot 13 \\ & 8 \cdot 24 \end{aligned}$
$X I^{\text {b }}$		$231-232$ (C)	$\underset{(381 \cdot 0)}{\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{2}}$	$\begin{aligned} & 66 \cdot 21 \\ & 66 \cdot 36 \end{aligned}$	$\begin{aligned} & 8.73 \\ & 8.79 \end{aligned}$	$\begin{aligned} & 7.35 \\ & 7.45 \end{aligned}$
XII	trans (86)	$114-115$ (D)	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (358 \cdot 5) \end{gathered}$	$\begin{array}{r} 73 \cdot 70 \\ 73 \cdot 59 \end{array}$	$\begin{aligned} & 9.56 \\ & 9.63 \end{aligned}$	$\begin{aligned} & 7.81 \\ & 7.72 \end{aligned}$
$X I I{ }^{\text {b }}$		$233-234$ (E)	$\underset{(395 \cdot 0)}{\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{ClN}_{2} \mathrm{O}_{2}}$	$\begin{aligned} & 66 \cdot 90 \\ & 66 \cdot 85 \end{aligned}$	$\begin{aligned} & 8.93 \\ & 8.85 \end{aligned}$	$\begin{aligned} & 7.09 \\ & 6.93 \end{aligned}$
XIII	mixture ${ }^{c}$ (82)	$96-120$ (D)	$\underset{(346 \cdot 5)}{\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}}$	$\begin{aligned} & 69 \cdot 33 \\ & 69 \cdot 56 \end{aligned}$	$\begin{array}{r} 8.73 \\ 8.85 \end{array}$	$\begin{aligned} & 8.09 \\ & 7.90 \end{aligned}$
XIII ${ }^{\text {b }}$		$208-232$ (A)	$\underset{(382 \cdot 9)}{\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{3}}$	$\begin{aligned} & 62 \cdot 73 \\ & 62 \cdot 32 \end{aligned}$	$\begin{aligned} & 8.16 \\ & 8.46 \end{aligned}$	$\begin{aligned} & 7 \cdot 31 \\ & 7 \cdot 20 \end{aligned}$
XIV	mixture (72)	95-103 (B)	$\underset{(360 \cdot 5)}{\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}}$	$\begin{aligned} & 69 \cdot 97 \\ & 70 \cdot 36 \end{aligned}$	$\begin{aligned} & 8.95 \\ & 9.25 \end{aligned}$	$\begin{aligned} & 7.77 \\ & 7.61 \end{aligned}$
$X I V^{\text {b }}$		$225-227$ (F)	$\underset{(397 \cdot 0)}{\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{3}}$	$\begin{aligned} & 63 \cdot 54 \\ & 63 \cdot 83 \end{aligned}$	$\begin{aligned} & 8.38 \\ & 8.11 \end{aligned}$	$\begin{aligned} & 7.06 \\ & 6.72 \end{aligned}$
$X V^{\text {b }}$	mixture (70)	$126-138$ (A)	$\underset{(455 \cdot 0)}{\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{ClN}_{2} \mathrm{O}_{4}}$	$\begin{aligned} & 63 \cdot 35 \\ & 63 \cdot 20 \end{aligned}$	$\begin{aligned} & 8.64 \\ & 8.39 \end{aligned}$	$\begin{aligned} & 6.16 \\ & 6.01 \end{aligned}$
$X V I^{\text {b }}$	cis (61)	$154-157$ (A)	$\underset{(469 \cdot 1)}{\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{ClN}_{2} \mathrm{O}_{4}}$	$\begin{aligned} & 64 \cdot 02 \\ & 64 \cdot 36 \end{aligned}$	$\begin{aligned} & 8.81 \\ & 9.01 \end{aligned}$	$\begin{aligned} & 5.97 \\ & 6.13 \end{aligned}$
XVII	trans (62)	$135-137$ (D)	$\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2} \\ (359 \cdot 5) \end{gathered}$	$\begin{aligned} & 70 \cdot 16 \\ & 70 \cdot 85 \end{aligned}$	$\begin{aligned} & 9 \cdot 25 \\ & 9 \cdot 30 \end{aligned}$	$\begin{aligned} & 11.69 \\ & 11.69 \end{aligned}$
$X V I I^{\text {b,d }}$	trans	190 (G)	$\underset{(450 \cdot 5)}{\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}}$	$\begin{aligned} & 56 \cdot 00 \\ & 56 \cdot 24 \end{aligned}$	$\begin{aligned} & 8.28 \\ & 8.54 \end{aligned}$	$\begin{aligned} & 9 \cdot 33 \\ & 9 \cdot 19 \end{aligned}$
XVIII	trans (30)	$\begin{aligned} & 47-50 \\ & \text { (H) } \end{aligned}$	$\underset{(373 \cdot 5)}{\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2}}$	$\begin{aligned} & 70 \cdot 74 \\ & 71 \cdot 03 \end{aligned}$	$\begin{aligned} & 9.44 \\ & 9.46 \end{aligned}$	$\begin{aligned} & 11.25 \\ & 11.08 \end{aligned}$
$X I X^{\text {b,d }}$	trans (82)	$187-191$ (G)	$\underset{(478 \cdot 5)}{\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}}$	$\begin{aligned} & 57.73 \\ & 58.09 \end{aligned}$	$\begin{aligned} & 8.64 \\ & 8.39 \end{aligned}$	$\begin{aligned} & 8.78 \\ & 8.79 \end{aligned}$
$\boldsymbol{X} \boldsymbol{X}^{\text {b,d }}$	trans (79)	$161-163$ (G)	$\underset{(506 \cdot 6)}{\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}}$	$\begin{aligned} & 59 \cdot 28 \\ & 58 \cdot 41 \end{aligned}$	$\begin{aligned} & 8.95 \\ & 8.52 \end{aligned}$	$\begin{array}{r} 8 \cdot 30 \\ 8 \cdot 24 \end{array}$

Table II
(Continued)

Compound	Isomer (Yield, \%)	$\begin{gathered} \text { M.p., }{ }^{\circ} R \\ \left(\text { solvent }{ }^{a}\right. \text {) } \end{gathered}$	Formula(M.w.)	Calculated/Found		
				\% C	\% H	\% N
$\boldsymbol{X X I}{ }^{\text {b }}$	(69)	$168-169$ (F)	$\underset{(376 \cdot 9)}{\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3}}$	$\begin{aligned} & 63 \cdot 74 \\ & 63.57 \end{aligned}$	$\begin{gathered} 6.68 \\ 7.02 \end{gathered}$	$\begin{aligned} & 7 \cdot 43 \\ & 7 \cdot 48 \end{aligned}$
$X X I I^{\text {b }}$	(56)	$165-167$ (A)	$\underset{(390 \cdot 9)}{\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3}}$	$\begin{aligned} & 64 \cdot 52 \\ & 64 \cdot 75 \end{aligned}$	$\begin{aligned} & 6.96 \\ & 6.93 \end{aligned}$	$\begin{aligned} & 7 \cdot 16 \\ & 7 \cdot 00 \end{aligned}$
XXIII ${ }^{\text {b }}$	(48)	$128-130$ (I)	$\begin{gathered} \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{4} \\ (449 \cdot 0) \end{gathered}$	$\begin{aligned} & 64 \cdot 20 \\ & 64 \cdot 07 \end{aligned}$	$\begin{aligned} & 7 \cdot 41 \\ & 7 \cdot 58 \end{aligned}$	$\begin{aligned} & 6 \cdot 24 \\ & 5 \cdot 93 \end{aligned}$
$X X I V^{\text {b }}$	(30)	$123-125$ (I)	$\underset{(477 \cdot 0)}{\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{ClN}_{2} \mathrm{O}_{4}}$	$\begin{aligned} & 65 \cdot 46 \\ & 65 \cdot 00 \end{aligned}$	$\begin{aligned} & 7.82 \\ & 7.76 \end{aligned}$	$\begin{aligned} & 5 \cdot 87 \\ & 5 \cdot 94 \end{aligned}$
$X X V^{b}$	(64)	$118-120$ (C)	$\underset{(374 \cdot 9)}{\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{2}}$	$\begin{aligned} & 67 \cdot 28 \\ & 67 \cdot 65 \end{aligned}$	$\begin{aligned} & 7 \cdot 26 \\ & 7 \cdot 46 \end{aligned}$	$\begin{aligned} & 7 \cdot 47 \\ & 7 \cdot 28 \end{aligned}$

[^0]Beside the O-cyclohexyl carbanilates we also prepared some compounds with phenyl group (Table II). The starting 2-(morpholinomethyl)phenol and 2-(piperidinomethyl)phenol were prepared by aminomethylation and their identity was verified by evaluation of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

The identity of the carbanilates prepared was verified by means of elemental analysis and analysis of the IR and ${ }^{13} \mathrm{C}$ NMR spectra. In the IR spectra we identified, inter alia, the bands corresponding to valence vibrations of $\mathrm{C}=\mathrm{O}, \mathrm{N}-\mathrm{H}$, and $\mathrm{C}-\mathrm{O}-\mathrm{C}$ groups of carbanilates (Table III). In the ${ }^{13} \mathrm{C}$ NMR spectra we identified the signals of the individual carbon atoms of carbanilates (Tables IV and V). These spectra also served for estimation of stereochemistry of the substituents of cyclohexane ring and/or as a purity check of the individual isomers. In the case of compound XIII the spectrum revealed a relatively high amount of the cis isomer which could then be separated by crystallization of the final carbanilate.

Preliminary tests for acute toxicity and local anaesthetic activity were carried out with some of the carbanilates prepared. From the results given in Table VI it follows that all the substances tested show a local anaesthetic activity equal to or higher than that of the standards used (cocaine and procaine). Replacement of cyclohexyl by phenyl in the linking chain reduces both the activity and toxicity. No activity

Table III
Infrared spectra $\left(\nu, \mathrm{cm}^{-1}\right)$ of carbanilates $I X-X X V$

Compound	Technique ${ }^{\text {a }}$	$\mathrm{N}-\mathrm{H}$	$\mathrm{C}=\mathrm{O}$	$\mathrm{C}-\mathrm{O}-\mathrm{C}$	$\mathrm{H}-\mathrm{N}^{(+) b}$
IX	A	3422	1717	1210	. -
				1215	
$X^{\text {c }}$	B	3185	1708	1225	2442
		3420			
	C	3175	1703	1220	2552 -
					-2460
XI	B	3430	1719	1222	-
	C	3290	1680	1253	-
$X I^{\text {c }}$	B	3416	1714	1235	2599
	C	3133	1707	1232	2597
XII	B	3433			-
$X I I^{\text {c }}$	B	$\begin{aligned} & 3420 \\ & 3136 \end{aligned}$	$\begin{aligned} & 1712 \\ & 1707 \end{aligned}$	$\begin{aligned} & 1235 \\ & 1223 \end{aligned}$	2605
					2599
XIII	$\stackrel{\text { B }}{\text { C }}$	$\begin{aligned} & 3427 \\ & 3249 \end{aligned}$	$\begin{aligned} & 1716 \\ & 1682 \end{aligned}$	$\begin{aligned} & 1213 \\ & 1255 \end{aligned}$	-
					-
XIV	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 3427 \\ & 3232 \end{aligned}$	$\begin{aligned} & 1719 \\ & 1685 \end{aligned}$	$\begin{aligned} & 1232 \\ & 1249 \end{aligned}$	-
					-
$X V^{c}$	$\begin{aligned} & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 3428 \\ & 3160 \end{aligned}$	$\begin{aligned} & 1726 \\ & 1728 \end{aligned}$	$\begin{aligned} & 1222 \\ & 1208 \end{aligned}$	2400
					2588
$X V I^{\text {c }}$	B	3428	1726	1220	$\begin{aligned} & 2200- \\ & -2500 \end{aligned}$
	C	3336	1730	1208	2436
				1220	
XVII	B	3420	1702	1225	-
$X V I I^{\text {c }}$	C	3350	1700	1220	2370
XVIII	B	3420	1700	1220	-
$X I X^{c}$	B	3406	1715	1225	2250
$X X^{c}$	B	3400	1715	1225	2240
$X X I^{\text {c }}$	B	3172	1754	1220	$\begin{aligned} & 2592- \\ & -2476 \end{aligned}$
	C	$\begin{aligned} & 3420 \\ & 3180 \end{aligned}$	1748	1210	2448
$X X I I^{\text {c }}$	B	$\begin{aligned} & 3140 \\ & 3416 \\ & 3184 \end{aligned}$	$\begin{aligned} & 1738 \\ & 1746 \end{aligned}$	$\begin{aligned} & 1226 \\ & 1210 \end{aligned}$	2452
					2448

[^1]Table III
(Continued)

Compound	Technique ${ }^{\text {a }}$	$\mathrm{N}-\mathrm{H}$	$\mathrm{C}=\mathrm{O}$	C-O-C	$\mathrm{H}-\mathrm{N}^{(+) b}$
XXIII ${ }^{\text {c }}$	B	3248	1748	1262	$2676-$
			1720		-2476
	C	3424	1756	1252	2240
$X X I V^{c}$	B	3424	1754	1252	$\begin{aligned} & 2932- \\ & -2860 \end{aligned}$
	C	3252	1750	1246	2560 -
			1724	1212	-2480
$X X V^{c}$	C	3152	1748	1220	$\begin{aligned} & 2636- \\ & -2544 \end{aligned}$

${ }^{a} \mathrm{~A}$ in dichlormethane, B in chloroform, C Nujol; ${ }^{b}$ centre or upper and lower limits of the band; ${ }^{c}$ hydrochloride.
differences were observed between the cis and trans isomers of the compounds investigated. As far as the substituents in aromatic ring are concerned, slightly more active and less toxic are the compounds with alkoxy group.

Compound	R^{\prime}	R^{2}	R^{3}	X
$X X I$	${ }^{\prime} \mathrm{CH}_{3}$	${ }^{7} \mathrm{CH}_{3}$		H
$X X I I$	${ }^{\prime} \mathrm{CH}_{3}$	${ }^{7} \mathrm{CH}_{3} \mathrm{H}_{8} \mathrm{NO}$		
$X X I I I$	${ }^{8} \mathrm{CH}_{3}$	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}$		
$X X I V$	$\mathrm{OC}_{6} \mathrm{H}_{13}$	H	H	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}$
$X X V$	$\mathrm{OC}_{8} \mathrm{H}_{17}$	H	H	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}$
	${ }^{7} \mathrm{CH}_{3}$	${ }^{\prime} \mathrm{CH}_{3}$	H	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}$

Table IV
${ }^{13} \mathrm{C}$ NMR spectra (δ, ppm) of cyclohexyl part ${ }^{4}$ of carbanilates $I X-X I V, X V I-X X$

Compound	Isomer	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10
IX	trans ${ }^{\text {b }}$	76.99	38.79	30.79	24.82	23.91	31.84	55.49	$49 \cdot 08$	8.58	-
X	trans ${ }^{\text {b }}$	76.99	38.67	$30 \cdot 83$	24.98	23.93	31.82	$55 \cdot 52$	$49 \cdot 12$	8.54	-
XI	trans	76.41	$40 \cdot 28$	29.89	24.82	24.43	$32 \cdot 10$	61.72	$55 \cdot 36$	25.99	24.43
XII	trans	$76 \cdot 17$	$40 \cdot 31$	29.89	24.92	24.51	$32 \cdot 12$	61.60	55.23	26.03	24.33
XIII	trans ${ }^{\text {c }}$	76.02	39.76	29.63	24.82	$24 \cdot 30$	31.97	61.33	54.32	67.05	-
XIV	trans ${ }^{\text {c }}$	75.89	39.76	29.63	24.82	$24 \cdot 30$	31.97	61.33	$54 \cdot 32$	67.05	-
XVII	trans	75.88	$40 \cdot 13$	29.66	24.86	24.34	$32 \cdot 18$	60.78	$55 \cdot 17$	53.71	46.04
XVIII	trans $^{\text {b }}$	75.88	$40 \cdot 25$	29.66	24.86	$24 \cdot 39$	32.18	$60 \cdot 79$	$55 \cdot 17$	53.65	$45 \cdot 98$
XIX	trans ${ }^{\text {b }}$	$74 \cdot 18$	37.32	29.95	23.98	23.46	$31 \cdot 12$	$60 \cdot 02$	$\begin{aligned} & 50 \cdot 25 \\ & 48 \cdot 44 \end{aligned}$	$49 \cdot 61$	$42 \cdot 94$
$\boldsymbol{X} \boldsymbol{X}$	trans ${ }^{\text {b }}$	$74 \cdot 11$	37-15	$29 \cdot 60$	23.81	$23 \cdot 34$	31.06	$59 \cdot 85$	$\begin{aligned} & 50 \cdot 25 \\ & 48 \cdot 44 \end{aligned}$	$49 \cdot 55$	43.00
XIII	cis ${ }^{\text {c }}$	72.12	$37 \cdot 55$	25.85	25.07	21.08	$30 \cdot 40$	60.94	$54 \cdot 19$	67.05	-
XIII	cis ${ }^{\text {d }}$	71.86	$37 \cdot 42$	25.73	25.08	20.92	30.28	$60 \cdot 81$	$54 \cdot 19$	67.05	-
XIV	cis ${ }^{\text {c }}$	71.86	$37 \cdot 42$	25.86	25.08	20.92	30.41	60.94	$54 \cdot 32$	67.05	-
$X V I$	cis ${ }^{\text {b }}$	$72 \cdot 38$	$35 \cdot 47$	26.89	25.99	$20 \cdot 14$	29.88	$60 \cdot 42$	$\begin{aligned} & 53 \cdot 80 \\ & 51 \cdot 46 \end{aligned}$	$63 \cdot 41$	-

${ }^{a}$ The numbering of carbon atoms follows the pattern shown in corresponding formulae; ${ }^{b}$ hydrochloride; ${ }^{c}$ derived from the spectrum of the mixture of both isomers; ${ }^{\boldsymbol{d}}$ pure isomers.
Table V
${ }^{13} \mathrm{C}$ NMR spectra (δ, ppm) of aromatic part ${ }^{a}$ of carbanilates $I X-X I V, X V I-X X, X X I I I-X X I V$

Carbon	Compound												
	$I X$	XI	XIII	XVII	\boldsymbol{X}	XII	XIV	XVIII	$X V I$	$X I X$	$X X$	XXIII	XXIV
$\mathrm{C}=\mathrm{O}$	153.9	154.6	$154 \cdot 9$	$154 \cdot 4$	$154 \cdot 0$	$154 \cdot 5$	$154 \cdot 8$	$154 \cdot 6$	$152 \cdot 8$	$152 \cdot 7$	$152 \cdot 8$	$150 \cdot 8$	$150 \cdot 8$
C-1'	$134 \cdot 4$	134.0	$134 \cdot 2$	$134 \cdot 0$	$136 \cdot 2$	$136 \cdot 4$	$136 \cdot 7$	$136 \cdot 5$	$127 \cdot 4$	$127 \cdot 1$	$127 \cdot 2$	$126 \cdot 5$	126.4
C-2'	$135 \cdot 8$	$135 \cdot 9$	$135 \cdot 9$	135.9	$135 \cdot 4$	$135 \cdot 6$	$135 \cdot 7$	$135 \cdot 6$	$147 \cdot 2$	$147 \cdot 5$	$147 \cdot 6$	$150 \cdot 1$	$150 \cdot 1$
C-3'	128.0	$128 \cdot 1$	128.0	$128 \cdot 1$	128.7	$128 \cdot 7$	128.8	$128 \cdot 8$	$111 \cdot 2$	111.3	$111 \cdot 3$	111.4	111.4
C-4'	$126 \cdot 8$	$127 \cdot 1$	126.9	$127 \cdot 0$	$131 \cdot 6$	$131 \cdot 3$	131.4	$131 \cdot 3$	$123 \cdot 3$	$123 \cdot 4$	123.4	$123 \cdot 2$	$123 \cdot 2$
C-5'	128.0	128.1	128.0	$128 \cdot 1$	$128 \cdot 7$	$128 \cdot 7$	128.8	$128 \cdot 8$	$120 \cdot 9$	$120 \cdot 8$	$120 \cdot 8$	$121 \cdot 0$	$121 \cdot 0$
C-6'	$135 \cdot 8$	$135 \cdot 9$	$135 \cdot 9$	$135 \cdot 9$	$135 \cdot 4$	$135 \cdot 6$	$135 \cdot 7$	$135 \cdot 6$	118.4	118.7	118.8	$120 \cdot 3$	$120 \cdot 3$
C-7'	$18 \cdot 6$	$18 \cdot 3$	$18 \cdot 3$	18.4	18.5	$18 \cdot 3$	18.3	$18 \cdot 3$	68.9	$68 \cdot 6$	$68 \cdot 8$	$69 \cdot 0$	$69 \cdot 0$
C-8'	-	-	-	-	20.9	$20 \cdot 9$	$20 \cdot 9$	$20 \cdot 9$	29.0	31.1	$29 \cdot 0$	$29 \cdot 1$	$29 \cdot 2$
C-9'	-	-	-	-	-	-	-	-	$26 \cdot 0$	$19 \cdot 2$	$25 \cdot 5$	$25 \cdot 7$	$26 \cdot 1$
C-10'	-	-	-	-	-	-	-	-	$29 \cdot 0$	$13 \cdot 9$	$31 \cdot 4$	31.5	$29 \cdot 4$
C-11'	-	-	-	-	-	-	-	-	$31 \cdot 7$	-	$22 \cdot 5$	$22 \cdot 6$	$29 \cdot 3$
C-12	-	-	-	-	-	-	-	-	$22 \cdot 5$	-	$14 \cdot 0$	14.0	$31 \cdot 8$
C-13'	-	-	-	-	-	-	-	-	$14 \cdot 0$	-			$22 \cdot 7$
C-14'	-	-	-	-	-	---	-	-	-	-	-	-	$14 \cdot 1$

[^2]With compound XIII (2-(morpholinomethyl)cyclohexyl 2,6-dimethylcarbanilate) we also carried out orientation tests of antiarrythmic activity in strophantin-provoked arrythmias and of influence on heart rate. Whereas the dose of 4 mg per kg showed a positive effect, the double concentration already appeared as toxic.

Only evaluation of a larger series of carbanilates with various substituents will allow to make conclusions from pharmacological results.

EXPERIMENTAL

The IR spectra were measured with two-beam spectrophotometers Specord IR-75 and M-80 (Zeiss, Jena) in Nujol suspensions and in chloroform or dichloromethane solutions.

The ${ }^{1} \mathrm{H}$ NMR spectra were measured with a CW spectrometer Tesla BS-487 A with the working frequence of 80 MHz . The ${ }^{13} \mathrm{C}$ NMR spectra were measured with a FT NMR spectrometer Jeol FX-100 with the working frequence of 25.05 MHz , the compounds $X X I-X X V$ on a Varian XL 300 apparatus. All the samples were measured as solutions in deuterochloroform with tetramethylsilane as the internal standard. The signals of individual carbon atoms were assigned with the help of literature data ${ }^{11,12}$ for 2-methylcyclohexanol and according to the $\mathrm{C}-\mathrm{H}$ splitting in the measurements by the off-resonance decoupling technique or with application of the DEPT experiment. The chemical shifts of carbon atoms of aromatic rings and alkoxy groups were compared with the calculated approximate values of chemical shift.

Table VI
Pharmacological properties of carbanilates $X-X V I I I, X X-X X V$

Compound	Anaesthesia ${ }^{\text {a }}$		$\begin{gathered} \mathrm{LD}_{50} \\ \mathrm{mg} / \mathrm{kg} \end{gathered}$
	surface ${ }^{\text {b }}$	infiltration ${ }^{\text {c }}$	
X	-	-	$\leqq 50$
XI	-	-	<50
XII	-	-	50-100
XIII	-	$18 \cdot 5$	50-200
XIV	$25 \cdot 0$	$4 \cdot 0$	300-600
XV'	$1 \cdot 3$	$15 \cdot 3$	50-200
$X V I$.17-1	$20 \cdot 0$	>600
XVII	$5 \cdot 0$	14.2	<50
XVIII	$5 \cdot 0$	$11 \cdot 1$	50-100
$X X$	$20 \cdot 0$	$4 \cdot \cdot 0$	200-400
$X X I$	-	$2 \cdot 3$	>600
XXII	-	$1 \cdot 0$	300-500
XXIII	-	$1 \cdot 0$	>600
XXIV	-	$1 \cdot 0$	>600
$X X V$	-	$2 \cdot 0$	400-500

[^3]The orientation tests of acute toxicity were carried out with white mice according to Švec et al. ${ }^{13}$, the efficiency index of surfacial and infiltration anaesthesia was estimated by the method by Vrba and Sekera ${ }^{14}$. The antiarrythmic activity and influence on the heart rate were evaluated according to refs ${ }^{15,16}$.

2-(Dialkylaminomethyl)cyclohexanols

They were prepared by the Mannich reaction and subsequent reduction. The Mannich reaction was carried out in excess cyclohexanone with 36% aqueous solution of formaldehyde ${ }^{8,9,17}$ or paraformaldehyde ${ }^{18}$ and with the corresponding amine or ammonium chloride. The reduction of the 2 -(dialkylaminomethyl)cyclohexanone hydrochloride formed was accomplished with sodium tetrahydridoborate in aqueous medium ${ }^{19}$ or, after liberation of the base, with lithium tetrahydridoaluminate in tetrahydrofurane ${ }^{8}$ or with sodium bis(2-methoxyethoxy)dihydridoaluminate in toluene solution according to a modified procedure ${ }^{20}$ (the decomposition was carried out with 20% sodium hydroxide solution). The obtained mixtures of cis and trans isomers of 2-(dialkylaminomethyl)cyclohexanols were treated with 4 -nitrobenzoyl chloride to give the hydrochlorides of 2 -(dialkylaminomethyl)cyclohexyl 4 -nitrobenzoates which were separated by crystallization from acetonitrile, ethanol, or acetone. The pure isomers (mostly trans) were obtained by hydrolysis with potassium hydroxide solution ${ }^{8}$.

The purity of the cyclohexanols prepared was checked by TLC (Silufol, benzene-acetone--diethylamine $20: 10: 1$) with detection in iodine vapours or by means of the Dragendorff reagent (the Munier modification ${ }^{21}$). Pure cis and trans isomers of 2-(dimethylaminomethyl)cyclohexanol ${ }^{7}$ were used as the standards (Table VII).

2-Morpholinomethylphenol and 2-Piperidinomethylphenol

Both the phenols were obtained by modifications of known procedures ${ }^{22.23}$. A solution of 0.5 mol amine in 50 ml ethanol was treated with 0.5 mol paraformaldehyde. After cooling to $25^{\circ} \mathrm{C}$, a solution of 0.5 mol phenol in 50 ml ethanol was added. The mixture was left to stand at room temperature until it was clear, and then it was refluxed 2 h . Ethanol was evaporated and the respective phenol was distilled under reduced pressure or crystallized from a suitable solvent.

2-Morpholinomethylphenol (VII): m.p. 85-89 ${ }^{\circ} \mathrm{C}$ (acetone). ${ }^{1} \mathrm{H}$ NMR spectrum: $6.52-7.17 \mathrm{~m}$, $4 \mathrm{H}(\mathrm{ArH}) ; 3.58 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 2.46 \mathrm{t}, 4 \mathrm{H}\left(\mathrm{CH}_{2}-\mathrm{N}, J=4.5\right) ; 3.65 \mathrm{t}, 4 \mathrm{H}\left(\mathrm{CH}_{2}-\mathrm{O}, J=4.5\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum: 157.5 (C-1); 120.6 (C-2); 128.8 (C-3); $119 \cdot 2$ (C-4); 128.8 (C-5); $116 \cdot 0$ (C-6); $61 \cdot 7\left(\mathrm{CH}_{2}\right) ; 52 \cdot 7\left(\mathrm{CH}_{2}-\mathrm{N}\right) ; 66 \cdot 6\left(\mathrm{CH}_{2}-\mathrm{O}\right)$. For $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}(193.1)$ calculated: $68.37 \% \mathrm{C}$, $7.82 \% \mathrm{H}, 7 \cdot 25 \% \mathrm{~N}$; found: $68.50 \% \mathrm{C}, 7 \cdot 95 \% \mathrm{H}, 7.09 \% \mathrm{~N}$.

Table VII

TLC of isomeric N -substituted 2-aminomethylcyclohexanols

	Compound:	II	III	IV	V
	cis:		0.15	0.35	0.37

2-Piperidinomethylphenol (VIII): b.p. $128-135^{\circ} \mathrm{C} / 30 \mathrm{~Pa}$ (ref. ${ }^{24}$ b.p. $126-130^{\circ} \mathrm{C} / 36 \mathrm{~Pa}$). ${ }^{1} \mathrm{H}$ NMR spectrum: $6.47-7.11 \mathrm{~m}, 4 \mathrm{H}(\mathrm{ArH}) ; 3.52 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 2.37 \mathrm{~m}$ (centre), $4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}\right)$; 1.48 m (centre), $6 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ in piperidine).

2-(Dialkylaminomethyl)cyclohexyl and 2-(Dialkylaminomethyl)phenyl Carbanilates
They were prepared by addition of the respective cyclohexanols or phenols to the corresponding substituted phenyl isocyanate. Equimolar amounts of the reactants were heated in anhydrous toluene 5 h . After cooling and evaporation of the solvent the obtained semi-solid or solid base of the corresponding carbanilate was purified by crystallization either as such or as the salt with hydrochloric acid (Table II).

REFERENCES

1. Čižmárik J., Borovanský A., Švec P.: Acta Fac. Pharm. Univ. Comen. 29, 53 (1976).
2. DePalma J. R., Schultz J. E.: Medizine 29, 123 (1972).
3. Baum T.: Arch. Int. Pharmacodyn. Ther. 200, 292 (1972).
4. Kozlovský J., Čižmárik J., Pešák M., Inczinger F., Borovanský A.: Arzneim.-Forsch. 32, 1032 (1982).
5. Ferrero E., Muzoni L.: Boll. Chim. Farm. 257, 118 (1967).
6. Beneš L., Švec P., Kozlovský J., Borovanský A.: Cesk. Farm. 27, 167 (1978).
7. Traynelis V. J., Dadura I. G.: J. Org. Chem. 26, 1813 (1961).
8. Puar M. S., Comen A. I., Krapcho J.: Org. Magn. Reson. 7, 508 (1975).
9. Simon P., Bernstein J., Krapcho J.: Ger. Offen. 2149900 (1972).
10. Möhrle H., Baumann H.: Arch. Pharm. 301, 219 (1968).
11. Pehk T., Lippmaa E.: Org. Magn. Reson. 8, 5 (1976).
12. Seo S., Tomita V., Tori K.: J. Am. Chem. Soc. 100, 3331 (1978).
13. Švec P., Čižmárik J., Béderová E., Borovanský A.: Acta Fac. Pharm. Univ. Comen. 29, 111 (1976).
14. Vrba C., Sekera A.: Arch. Int. Pharmacodyn. Ther. 118, 155 (1959).
15. Pávek K., Selecký F.: Bratisl. Lekár. Listy 40, 481 (1960); Chem. Abstr. 55, 1938a (1961).
16. Schröder R., Südhoff H.: Hodnocení EKG v praxi, p. 14. Avicenum, Prague 1971.
17. Treibs W., Mühlstaedt M.: Chem. Ber. 87, 407 (1954).
18. Flick K., Frankus E., Friedrichs E.: Arzneim.-Forsch. 28, 107 (1978).
19. Möhrle H., Baumann H.: Arch. Pharm. 299, 355 (1966).
20. Čapka M., Chvalovský V., Kochloefl K., Kraus M.: Collect. Czech. Chem. Commun. 34, 118 (1969).
21. Šaršúnová M., Schwarz V., Michalec Č. et al.: Chromatografie na tenkých vrstvách vo farmácii a v klinickej biochémii, p. 458. Osveta. Martin 1977.
22. Fitzgerald J.: J. Appl. Chem. 5, 289 (1955).
23. Bruson M. A., MacMullen C. W.: J. Am. Chem. Soc. 63, 270 (1941).
24. Hodgkin J. H.: Aust. J. Chem. 37, 2371 (1984).

Translated by J. Panchartek.

[^0]: ${ }^{a}$ A acetone, B hexane, C ethanol, D heptane, E ethanol-ether, F aceton-ethanol, G acetonitrile, H petroleum ether, I ethyl acetate; ${ }^{b}$ hydrochloride; ${ }^{c}$ isomers separated by crystallization of carbanilates: trans, m.p. $102-104^{\circ} \mathrm{C}$, cis, m.p. $128-130^{\circ} \mathrm{C}$; ${ }^{d}$ hydrate.

[^1]: Collect. Czech. Chem. Commun. (Vol. 55) (1990)

[^2]: ${ }^{a}$ The numbering of carbon atoms follows the pattern shown in corresponding formulae.

[^3]: ${ }^{a}$ Relative activity; ${ }^{b}$ cocain $=1 \cdot 0 ;{ }^{c}$ procaia $=1 \cdot 0$.

 Collect. Czech. Chem. Commun. (Vol. 55) (1990)

